

20/07/2011, Naoum Jamous.doc

1

Evaluation categorizes, technologies decision for a Composite

Environmental Performance Indicators (LWC-EPI) solution

Naoum Jamous1, Frederik Kramer1, Gamal Kassem1

Abstract

Rapid environmental changes have necessitated a closer and more critical review of current environmental policies.

In light of a myopic tendency to focus on short- to medium-term objectives within organizations, environmental is-

sues are usually not given full attention. In this regard, recommendation- or dashboard-like systems are useful to in-

crease the awareness of management as to the impact of their decisions on the environment on a more frequent and

cost-effective basis. However, the role of current environmental management information systems (EMIS) in provid-

ing organizations with the information enabling them to assess the current impact of their processes and operations

on the environment has been given more prominence.

Information technology is changing business in ever shortening cycles. Especially with the success of the Java plat-

form, the standardization through the i386 hardware platform and last but not least the rivalry introduced by the Free,

Libre and Open Source Software (F/LOSS) paradigm a sheer inconceivable amount of programming languages, inte-

grated development environments, design patterns and programming frameworks have been disseminated.

In this paper, we will start with a state of the art of the available tools support providing dashboard-type solutions to

control and monitor the EPI’s in an organization, which may lead to reduce the gap between estimated values and

current running values for environment on a more frequent basis than a mere yearly review. Furthermore, we will

propose an evaluation categorizes to be used as a methodology to take the technologies decisions.

1. Introduction

Preserving the environment is a real global issue. Our ecosystem does not have borders, so we have to

know that wherever we are, our actions have repercussion on the whole earth. Our planet has one atmos-

phere that we share and we have to protect it. Environmental issues have become an important public pol-

icy goal throughout the world, and preservation of environmental sustainability and energy efficiency are

becoming new challenges for today’s companies (Günther, 1998). Corporate environmental management

information systems (CEMIS) can play a major role to change attitudes by providing information that en-

ables users to assess the current environmental impact of their processes and operations.

In this paper we will investigate the state of the art of different software development approaches with

respect to the LWC-EPI platform under development. In other words, we will investigate the available

tools support providing dashboard-type solutions to control and monitor the EPI’s in an organization,

which may lead to reduce the gap between estimated values and current running values for environment

on a more frequent basis than a mere yearly review. Therefore it will not recite the broad variety of terms

and technologies that historically emerged but instead concentrate on those that are useful to be considered

within the LWC-EPI solution. Furthermore, we will propose an evaluation categorizes to be used as a

methodology to take the technologies decisions.

1 Faculty of Informatics, Otto-von-Guericke-Universitaet, Germany.

20/07/2011, Naoum Jamous.doc

2

1.1 Motivation

Information technology is changing business in ever shortening cycles. Especially with the success of the

Java platform, the standardisation through the i386 hardware platform and last but not least the rivalry in-

troduced by the Free, Libre and Open Source Software (F/LOSS) paradigm a sheer inconceivable amount

of programming languages, integrated development environments, design patterns and programming

frameworks have been disseminated.

The main objective of the LWC-EPI is to provide an efficient environmental information system that

can help any small or medium sized enterprise “SME” in selecting, creating, calculating, comparing and

reporting its environmental performance indicators “EPIs”. Therefore, our challenge is to find a cost-

effective solution taking into consideration the size and type of an organisation and its needs and priorities

(Jamous, et al., 2010). Proposing a way that helps the enterprise to find the appropriate EPIs which ad-

dress primarily those environmental impacts that are most significant and which the enterprise can influ-

ence by its operations, management, activities, products and services (Jamous, et al., 2011).

Such a tool can be considered as an analysis and reporting system which is characterized by:

1. Read-only operation.

2. Inquiring over huge amounts of data with different dimensions, characteristics and measures (Key Per-

formance Indicators (KPI)) over the time.

3. Ad hoc querying to allow the users themselves to create specific and customized queries.

4. A flexibility to allow the users to create and change the data models. For example structures of an En-

vironmental Performance Index (EPI) and its indicators and relationships.

There are many specific concepts and techniques which could help to develop such a tool:

- Data warehousing (cover point 1 and 2)

- Multidimensional modelling (cover point 1 and 2)

- Online Analytical Processing (OLAP) (cover point 3)

- Meta models / repositories (cover point 4)

- Service-oriented architecture (SOA) (cover point 4)

This technological diversity does not shape the challenge to determine the “state of the art” easier. In other

words the appropriate state of the art is depending on project preconditions such as:

• The already existing software.

• Information system assets.

• The strategy of the underlying business.

• The scale of the intended application.

• The available developer skills.

Our primary research objective is to determine the state of the art on software development architectures

for a specific development project and its constraint. In order to achieve that goal we need to model a gen-

eral comparison framework containing criteria to evaluate technologies based on concrete project re-

quirements. The following chapter will thus introduce those criteria.

2. State of the Art Platform Solutions

In order to determine the state of the art we have to briefly specify what the term “state of the art” means.

It stems from jurisdiction and more specifically patent law. It is used to determine whether an invention is

new with respect to what already existed before. The European Patent Convention only indirectly defines

the term state of the art however. It says in its 56 article (EU-Patent-Convention, 2007): “An invention

shall be considered as involving an inventive step if, having regard to the state of the art, it is not obvious

to a person skilled in the art.”

20/07/2011, Naoum Jamous.doc

3

Following this definition it is obvious that every programming language that has been disseminated or

proposed in the internet is already part of that construct. Given the huge amount of programming lan-

guages and paying no attention to patterns, tool support and alike, it is immediately obvious that we need

to shrink in the meaning of “state of the art” within the scope of this article. We will do so by adding a

new part to the phrase such as: “State of the art within the scope of this research project means whatever

technology is available and can be used to build up enterprise ready web applications”. Within this im-

proved specification of the term we put two additional constraints.

First we would like an application developed with state of the art technologies to be enterprise ready.

Enterprise readiness means that any used technology can match important enterprise criteria by its own. It

must be clearly said that enterprise readiness depends at least on project if not company preconditions.

Furthermore selecting enterprise ready software technologies does not necessarily mean the resulting

software is enterprise ready as well. Since we are targeting basically SMEs, a second precondition is that

the technology must allow developing a pure web application without putting many restrictions on the cli-

ent side of the application. This preconditions stem from the fact that an ideal application should comply

with the aims of having as few as possible restrictions on the users accessing the platform. In order to

achieve this goal we define evaluation categories in the next paragraph.

To enhance our state of the art, we started with comparing the web application frameworks products’

available in the market. We selected 13 products “or tools” of web application frameworks based on dif-

ferent technologies. The tables 1 to 13 summarize the result of this comparison.

2.1 PHP framework

Product Name Zend

Programming Language PHP 5

Architecture Pattern Adopts MVC architecture

Ajax Support Ajax, PDF generation, e-mail communication, and search.

i18n/ l10n Yes

ORM Table and Row data gateway.

SOA Web services are an integral part of Zend Framework.

Cashing Support data Caching

License BSD License

General remarks

• Support Rapid Application Development (RAD)

• ACL-based and RBCA-based, plugins

• Authentication, Authorization, and Session management

Table 1: Zend (Zend, 2006)

Product Name CakePHP

Programming Language PHP 5

Architecture Pattern Adopts MVC architecture

Ajax Helpers AJAX, Javascript, XML, RSS

i18n/ l10n Yes

ORM
• Active record pattern (CakePHP 1.x)

• Data Mapper Pattern (CakePHP 2.x)

SOA
Helpers for HTML, Forms, Pagination, AJAX, Javascript, XML, RSS and

more

20/07/2011, Naoum Jamous.doc

4

Cashing Flexible Caching

License BSD License

General remarks

• Security, Session, and Request-Handler Components

• HTTP Authentication via Security Component

• Access Control Lists and Authentication

• CSRF protection via Security Component

• Router for mapping urls and handling extensions

• Utility classes for working with Files, Folders, Arrays and more

Table 2: CakePHP (cakephp, 2005)

Product Name Drupal

Programming Language PHP 5

Architecture Pattern Mini-MVC / Push & Pull MVC

Ajax Yes

i18n/ l10n Yes

ORM Optional modules

SOA Web services

Cashing Memcache, APC, Varnish

License GNU GPL

General remarks
• DB migration framework

• Simple Testing framework

Table 3: Drupal (Drupal, 2001)

Product Name CodeIgniter

Programming Language PHP 5

Architecture Pattern
• Adopts MVC architecture

• Modified active record pattern

Ajax Prototype "jQuery/jQuery UI"

i18n/ l10n Yes

ORM
Full Featured database classes

Active Record Database Support

SOA XML-RPC Library

Cashing Full Page Caching

License BSD License

General remarks

• Security and XSS Filtering

• Flexible URI Routing

• File Uploading Class

• Support for Hooks, Class Extensions, and Plug-in

Table 4: CodeIgniter (codeigniter, 2001)

20/07/2011, Naoum Jamous.doc

5

Product Name Yiiframework

Programming Language PHP 5

Architecture Pattern Adopts MVC architecture

Ajax AJAX-enabled widgets

i18n/ l10n Yes

ORM DAO and Active Record

SOA Supports automatic generation of complex WSDL service specifications and

management of Web service request handling.

Cashing Supports data caching, page caching, fragment caching and dynamic content.

License BSD License

General remarks • Built-in authentication support. It also supports authorization via hierar-

chical RBAC.

• Purely object-oriented.

Table 5: Yiiframework (yii, 2008)

2.2 ASP.Net framework

Product Name ASP.NET MVC

Programming Language ASP.NET

Architecture Pattern Web application framework that implements the MVC

Ajax Support Ajax

i18n/ l10n No

ORM Independent ORM

SOA Web application framework

Cashing Cashing framework

License MS-PLicense

General remarks
• Unit testing framework

• ASP.NET Forms Authentication.

Table 6: ASP.NET MVC (ASP.NET, 2007)

Product Name MonoRail

Programming Language ASP.NET

Architecture Pattern MVC: Active record pattern

Ajax Prototype

i18n/ l10n Yes

ORM Active record pattern

SOA --

Cashing Cashing framework

License Apache License

General remarks

• Formerly called Castle on Rails

• Unit testing framework

• ACL-based , ASP.NET Forms Authentication.

Table 7: MonoRail (MonoRail, 2010)

20/07/2011, Naoum Jamous.doc

6

2.3 Web application framework

Product Name Grok

Programming Language Python

Architecture Pattern Use Pure MVC Python version

Ajax Yes

i18n/ l10n Yes

ORM OODBMS

SOA --

Cashing Cashing framework

License ZPL

General remarks
• Based on Zope Toolkit

• OODBMS called ZODB, SQLAlchemy, Storm

Table 8: Grok (Grok, 2008)

Product Name Camping

Programming Language Ruby

Architecture Pattern Organized in MVC application

Ajax No

i18n/ l10n No

ORM Active record pattern

SOA web application framework

Cashing No

License MIT

General remarks

• Light weight code “less than 4kB”

• No security framework

• Testing via Mosquito

Table 9: Camping (Camping, 2009)

2.4 Java-based web application framework

Product Name Spring

Programming Language Java

Architecture Pattern

• Has its own MVC framework called "Spring MVC".

• Spring MVC is considered the better solution in many developer forums

compared to struts

Ajax Yes

i18n/ l10n Yes

ORM Abstraction layer for all kind of persistence frameworks (incl. Hibernate)

SOA
• Spring Web Services.

• Supports SOAP-based and RESTful Web services.

Cashing ehcache.etc.

License Apache

20/07/2011, Naoum Jamous.doc

7

General remarks

• Inversion of Control concept

• Independent code entities

• Has its own security framework

• Decoupled configuration

Table 10: Spring (Spring, 2002)

Product Name Apache Struts

Programming Language Java

Architecture Pattern
• Provides its own MVC architecture

• Presentation code is written with JSP templates

Ajax Yes

i18n/ l10n Yes

ORM Supported

SOA --

Cashing --

License Apache

General remarks
• Java-based open-source web-application framework.

• Focus on MVC pattern.

Table 11: Apache Struts (Struts, 2000)

Product Name Tapestry

Programming Language Java

Architecture Pattern Provides its own MVC architecture.

Ajax Yes

i18n/ l10n Yes

ORM tapestry-hibernate module

SOA --

Cashing --

License Apache

General remarks

• Java-based open-source web-application framework.

• Focus on MVC pattern

• Implements Inversion of Control concept

• Encourages the implementation of small code entities

Table 12: Tapestry (Tapestry, 2010)

2.5 Java-based application server

Product Name JBoss

Programming Language Java

Architecture Pattern Supports JSP as well as JSF

20/07/2011, Naoum Jamous.doc

8

Ajax Yes

i18n/ l10n Yes

ORM Supports JPA and Hibernate

SOA Support JAX-WS and JAX-RS specification

Cashing JbossCache, EHCache

License GNU LGPL

General remarks
• Integrated Hibernate

• Supports JPA specification

Table 13: JBoss (Jboss, 2010)

Product Name WebObjects

Programming Language Java

Architecture Pattern
• Visual editor for creating the UI

• Based on MVC

Ajax Yes

i18n/ l10n Yes

ORM Enterprise Objects Framework (EOP)

SOA --

Cashing Supported

License Proprietary

General remarks

• Java-based application server and web-application framework.

• Closely related to Apple products

• Introduces its own mapping from database tables to business objects

Table 14: WebObjects (webobjects, 2005)

3. Evaluation categories

3.1 Programming Paradigm

Even if that question has been discussed in ample scientific disputes since its dissemination in the 1960s

and almost all modern software development technologies focus on the object oriented paradigm it has to

be kept as an important decision category in the model.

This is because object orientation is not just a matter of technology selection but also a software devel-

opment concern itself. While not being easy it is possible to develop procedural code instead of object ori-

ented code in principle even in environments that focus on pure object orientation. Moreover there are ar-

guably some cases were procedural programming is more suitable to solve problems than object orientated

programming is. However almost all of those cases are related to memory usage, run time performance

and embedded technologies instead of playing a visible role in enterprise web application development.

20/07/2011, Naoum Jamous.doc

9

3.2 Architectural and Design patterns

In the history of software engineering it became obvious that similar software engineering problems that

arose from different types of business domains can often be grouped into and addressed by applying the

same or similar processes and behaviour (in short patterns) in the design phase of an application.

Using appropriate design patterns supports developers to develop more maintainable and also more se-

cure software. Patterns like the famous Model, View, Controller pattern hence try to methodologically

separate concerns such as database representation, business logic and user presentation from each other.

Patterns like Service-oriented architectures (SOA) address organisation wide and even inter-organisational

exchange and reuse of business process portions (in this case known as “services”).

3.3 Programming Language

With the rise of the internet an unconceivable competition of programming languages and paradigms has

begun. Whereas in the history of information technology the programming language was often predeter-

mined by the hardware platform used, the standardisation towards the i386 platform widely opened the

battlefield of technology to software and more specifically to programming languages.

As already mentioned in the introduction, today there is a zoo of programming languages, some of

which addressing a generally broad user-community (like PHP or Java) and variety of potential applica-

tions (e.g. Java, C#), some others rather special needs (e.g. Prolog, Smalltalk, Ruby). While determining

the state of the art with respect to the defined constraints the subset of programming languages has been

stripped down. We only consider technology to comply with our state of the art term, if they are in princi-

ple well suited to develop enterprise ready application and have strength in web application development.

3.4 Development Environment

Tooling support is crucial. If there might be some sort of fancy design paradigm, that could be best im-

plemented in programming language “A” to match the goals of LWC-EPI but the tooling for this combina-

tion is weak or not existing, one might end up with lots of duplicate and inefficient work.

Higher cost of implementation and maintenance would be a severe economic drawback. Last but not

least missing tooling support seriously hampers the dissemination of the technology to create SISE. This

situation must be avoided by using a weighted criteria model.

3.5 Strategic perspective

In cases where technology selection is necessary often the strategic perspective is disregarded. This often

happens if technicians decide on their own about technology without shedding an eye on strategic implica-

tions. Regularly this hampers the success of enterprises or its projects. With regard to the LWC-EPI’s con-

straints we define the following strategic criteria to be evaluated and support the technology decision be-

fore it can finally be taken.

A technology must be sustainable and enough personnel must be available that is able to develop on the

basis of that technology. The technology must be mature and the maturity must be proven in industry scale

web application projects. The learning curve must be reasonably steep. A technology that requires an un-

reasonably costly training shall hence not be selected. The technology must be flexible. Flexibility for ex-

ample requires good and comprehensive documentation of basic concepts of a technology. Technological

boundaries must thus be unveiled by appropriate investigations. An ideal technology must be portable.

This means it should not be delimited to a special set of vendor specific it-infrastructure for example.

20/07/2011, Naoum Jamous.doc

10

A lot of programming languages, tools, as well as architectural models (e.g. RCP) have been released un-

der F/LOSS licenses, others follow an almost entirely closed stack (e.g. MS Visual Studio). This has to be

addressed and investigated as well.

4. Technology decision

4.1 Scoring model

A Scoring model is a formula that assigns credits, points, or weights based on known information to pre-

dict an unknown future outcome (scoringmodels, 2007) or supports a decision making process (Kleijnen,

1980). In our case, we will use the scoring model to set the elements and factors which will help in choos-

ing the technologies and solutions to be used in the LWC-EPI platform.

As we mentioned before, the main objective of the LWC-EPI is to provide an efficient environmental

information system that can help any small or medium sized enterprise “SME” in selecting, creating, cal-

culating, comparing and reporting its environmental performance indicators “EPIs”.

4.2 Value benefit analysis

In our decision making process, we will use the value benefit analysis which is a useful method for prepar-

ing decisions systematically (Schulze, 2006). The two main advantages of using the value benefit analysis

are:

• We can take non-quantitative criterions into consideration,

• It could cover many point of views (developers, users, stakeholders, etc.), so it’s a flexible multidimen-

sional method.

To apply the value of benefit analysis we need five steps:

1. Listing all alternatives.

2. Setting the comparison measures.

3. Establish weights for the measures.

4. Establish factors to rate the alternatives based on different measures.

5. Determine the value of benefit.

4.2.1 Listing all alternatives

In this step we list most of possible solutions for developing the LWC-EPI platform. Starting to develop

the platform, we should decide what and which solutions or technologies we want to use. As a first step

we should decide which programming language we will use. As alternatives we will take six well known

programming languages, table 15 shows the six alternatives:

Programming languages Java PHP C++ .Net Python Ruby

Table 15: Programming languages for LWC-EPI

20/07/2011, Naoum Jamous.doc

11

4.2.2 Setting the comparison measures

In this step, we set the measures that we want to use for the evaluation. Here we select the most important

criterions or measures. To do so, we assign an importance label for each potential measure that can be

used like “high” for very important measures, “middle” for important ones and “low” for not very impor-

tant measures for our case. Table 16 shows nine measures with the importance label for each.

Measure ID Measure Importance label

01 Platform independency high

02 Data base connector / Persistency / DAO high

03 Web application readiness high

04 RAD “Rapid Application Development” framework high

05 Libraries middle

06 Documentation middle

07 Tooling middle

08 Enterprise readiness “maturity” low

09 Future Development low

Table 16: measures’ importance labels

4.2.3 Establish weights for the measures

After selecting the measures to be used, we have to evaluate the relations among them. To do that we ar-

ranged a matrix table in which the rows and the columns represent the measures. After assessing all meas-

ures in pairs based on the importance label, we calculated each measure weight factor by summing up all

the numbers we assigned for each measure and divide this sum by the total sum over all single sums in the

matrix lines. As matrix table filling’s criteria, we give “0” if the compared measure is less important than

the other measure; we put “1” if they have the same importance label and “2” if the compared measure is

more important than the other. Table 17 shows the measures’ matrix.

Measure ID 01 02 03 04 05 06 07 08 09 Sum Weight factor

01 - 1 1 1 2 2 2 2 2 13 0.180

02 1 - 1 1 2 2 2 2 2 13 0.180

03 1 1 - 1 2 2 2 2 2 13 0.180

04 1 1 1 - 2 2 2 2 2 13 0.180

05 0 0 0 0 - 1 1 2 2 6 0.084

06 0 0 0 0 1 - 1 2 2 6 0.084

07 0 0 0 0 1 1 - 2 2 6 0.084

08 0 0 0 0 0 0 0 - 1 1 0.014

09 0 0 0 0 0 0 0 1 - 1 0.014

Total sum 72 1

Table 17: measures’ matrix

20/07/2011, Naoum Jamous.doc

12

4.2.4 Establish factors to rate the alternatives based on different measures

In this step we evaluate the fulfilment of the measures for each alternative. To do so we will use the pre-

sented scale in table 18:

Grade NA 1 2 3 4 5

Rate No answer Very good Good Satisfactory Sufficient Not sufficient

Table 18: Rating scale

Such a rating scale allows us to rate the alternatives we listed in step 1. Table 19 shows the result of the

rating which was done by 10 experts from different organizations “Enterprises, Universities and research

centres”. To get more accurate result, we excluded all “NA’s” answers after asking the experts to use it for

the alternatives or measures which they are not familiar with.

Programming

Language
Java PHP C++ .Net Python Ruby

Measure ID Rating

01 1.00 0.86 0.52 0.48 0.80 0.80

02 0.96 0.80 0.80 0.85 0.87 0.75

03 0.88 0.94 0.48 0.88 0.84 0.88

04 0.84 0.81 0.50 0.74 0.83 0.84

05 0.98 0.80 0.73 0.77 0.89 0.76

06 0.94 0.86 0.71 0.86 0.77 0.60

07 0.96 0.69 0.84 0.88 0.70 0.65

08 0.96 0.60 0.84 0.95 0.73 0.52

09 0.69 0.74 0.68 0.83 0.77 0.72

Table 19: Alternatives’ rating

4.2.5 Determine the value of benefit

The value of benefit is the result of combining step 4 “rating scale” results and step 3 “measures’ weights”

results. To calculate the value of benefit we multiply the rating points with the corresponding weights and

sum these products up for each alternative. To make it more visible, we will multiply the results by 100.

At the end, the alternative with the highest sum (value of benefit) will be suggested to be selected.

Table 20 shows the value benefit of each programming language for each measure and in the last row

we can see the value of benefit for each alternative in general.

As a result, Java programming language got the highest value of benefit followed by PHP. So we rec-

ommend using one of the two choices for the platform development.

20/07/2011, Naoum Jamous.doc

13

Programming

Language
Java PHP C++ .Net Python Ruby

Meas

ure

ID

Weight

factor

Rat-

ing

Valu

e of

Bene

fit

Rat-

ing

Valu

e of

Bene

fit

Rat-

ing

Valu

e of

Bene

fit

Rat-

ing

Valu

e of

Bene

fit

Rat-

ing

Valu

e of

Bene

fit

Rat-

ing

Valu

e of

Bene

fit

01 0.180 1.00
18

0.86
15.4

8
0.52 9.36 0.48 8.64 0.80 14.4 0.80 14.4

02 0.180 0.96
17.2

8
0.80

14.4
0.80 14.4 0.85 15.3 0.87

15.6

6
0.75 13.5

03 0.180 0.88
15.8

4
0.94

16.9

2
0.48 8.64 0.88

15.8

4
0.84

15.1

2
0.88

15.8

4

04 0.180 0.84
15.1

2
0.81

14.5

8
0.50 9 0.74

13.3

2
0.83

14.9

4
0.84

15.1

2

05 0.084 0.98
8.23

2
0.80

6.72
0.73

6.13

2
0.77

6.46

8
0.89

7.47

6
0.76

6.38

4

06 0.084 0.94
7.89

6
0.86

7.22

4
0.71

5.96

4
0.86

7.22

4
0.77

6.46

8
0.60 5.04

07 0.084 0.96
8.06

4
0.69

5.79

6
0.84

7.05

6
0.88

7.39

2
0.70 5.88 0.65 5.46

08 0.014 0.96
1.34

4
0.60

0.84
0.84

1.17

6
0.95 1.33 0.73

1.02

2
0.52

0.72

8

09 0.014 0.69
0.96

6
0.74

1.03

6
0.68

0.95

2
0.83

1.16

2
0.77

1.07

8
0.72

1.00

8

Total 92.74 83 62.68 76.68 82.04 77.48

Table 20: Alternatives’ rating

5. Conclusion and future steps

In this paper we investigated the state of the art of different software development approaches with respect

to the LWC-EPI platform under development. The was to study and compare the available tools support

providing dashboard-type solutions that could be used to control and monitor the EPI’s in an organization,

which may lead to reduce the gap between estimated values and current running values for environment

on a more frequent basis than a mere yearly review. Therefore, we clarified the relevant terms and tech-

nologies that are useful to be considered within the LWC-EPI solution. Furthermore, we proposed an

evaluation categorizes to be used as a methodology to take the technologies decisions. Afterwards, we

used the scoring method to compare and then select the appropriate programming language to be used for

the LWC-EPI platform development.

The next step, after conducting a complete and detailed value benefit analysis on the used programming

languages, will be to complete the LWC-EPI platform specifications “server, DBMS, web services and the

development environment”.

This step will be done by selecting appropriate technologies based on the result we got. In addition, we

will take the feedback of experts involved in different type of organizations (Enterprises, Universities and

Research Centres) as well as our own diverse experience from various IT-projects into account.

20/07/2011, Naoum Jamous.doc

14

6. Acknowledgment

Part of this research has been funded under the EC 7th Framework Program, in the context of the OEPI

project (748735). The authors thank for the support.

7. Bibliography

ASP.NET mvc [Online] // www.asp.net. - 2007. - 2010. - http://www.asp.net/mvc.

cakephp cakephp [Online]. - 2005. - 2010. - http://cakephp.org/.

Camping [Online] // whywentcamping.com. - 2009. - 2010. - http://whywentcamping.com/.

codeigniter codeigniter.com [Online]. - 2001. - 2010. - http://codeigniter.com/.

Drupal Drupal [Online]. - 2001. - 2009. - http://drupal.org/home.

EU-Patent-Convention European Patent Convention, Article 56 [Report]. - 2007.

Grok Grok [Online] // grok.zope.org. - 2008. - 2010. - http://grok.zope.org/.

Günther Oliver Environmental Information Systems [Book]. - Berlin : Springer, 1998. - ISBN: 3-540-

60926-1.

Jamous Naoum [et al.] Light-weight composite environmental performance indicators (LWC-EPI)

concept. In: Information technologies in environmental engineering [Book Section] // Information

Technologies in Environmental Engineering, New Trends and Challenges / book auth. Golinska Paulina

and Fertsch Marek / ed. Marx Gómez Jorge. - Berlin : Springer, 2011. - Vol. 3. -

http://www.springerlink.com/content/j86665463452kt25/. - ISBN 978-3-642-19535-8.

Jamous Naoum [et al.] Proposed Light-Weight Composite Environmental Performance Indicators

(LWC-EPI) Model [Conference] // the 24st International Conference on Informatics for Environmental

Protection (EnviroInfo2010). - Bonn & Cologne : shaker Verlag, 2010. - http://www.shaker.de/Online-

Gesamtkatalog-Download/2011.01.20-19.39.57-141.44.30.154-rad5B823.tmp/3-8322-9458-9_INH.PDF. -

ISBN 978-3-8322-9458-8.

Jboss Jboss [Online] // www.jboss.com. - 2010. - 2010. - http://www.jboss.com/about/.

Kleijnen Jack P C Scoring Methods, Multiple criteria, and utility analysis [Journal] // ACM

SIGMETRICS Performance Evaluation Review. - New York : [s.n.], 1980. - 3 : Vol. 9. - ISSN: 0163-

5999.

MonoRail monorail [Online] // www.castleproject.org. - 2010. - 2010. -

http://www.castleproject.org/monorail/.

Rautenstrauch Claus Betriebliche Umweltinformationssysteme : Grundlagen, Konzepte und Systeme ;

mit 8 Tabellen. [Book]. - [s.l.] : Springer, 1999. - ISBN: 3-540-66183-2..

Schulze Lothar Basics planning of logistical systems [Online] // Global campus 21. - 2006. -

http://gc21.inwent.org/ibt/en/ilt/ibt/regionalportale/sadc/inhalt/logistics/module_03/61_value_benefit_anal

ysis.html.

scoringmodels www.scoringmodels.com [Online]. - 2007. - 2010. - http://www.scoringmodels.com/.

Spring Spring [Online] // springsource.org. - 2002. - 2009. - http://www.springsource.org/.

Struts Apache struts [Online] // www.apache.org. - 2000. - 2009. - http://struts.apache.org/.

Tapestry tapestry [Online] // www.apache.org. - 2010. - 2010. - http://tapestry.apache.org/.

webobjects webobjects [Online] // developer.apple.com. - 2005. - 2010. -

http://developer.apple.com/legacy/mac/library/navigation/index.html?filter=webobjects.

yii yiiframework.com [Online]. - 2008. - 2010. - http://www.yiiframework.com/.

Zend Zend framework [Online]. - 2006. - 2010. - http://framework.zend.com/home.

